Applications of a Multi-objective Genetic Algorithm to Engineering Design Problems

نویسنده

  • Johan Andersson
چکیده

This paper presents the usage of a multi-objective genetic algorithm to a set of engineering design problems. The studied problems span from detailed design of a hydraulic pump to more comprehensive system design. Furthermore, the problems are modeled using dynamic simulation models, response surfaces based on FE–models as well as static equations. The proposed method is simple and straight forward and it does not require any problem specific parameter tuning. The studied problems have all been successfully solved with the same algorithm without any problem specific parameter tuning. The resulting Pareto frontiers have proven very illustrative and supportive for the decision-maker.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model and Solution Approach for Multi objective-multi commodity Capacitated Arc Routing Problem with Fuzzy Demand

The capacitated arc routing problem (CARP) is one of the most important routing problems with many applications in real world situations. In some real applications such as urban waste collection and etc., decision makers have to consider more than one objective and investigate the problem under uncertain situations where required edges have demand for more than one type of commodity. So, in thi...

متن کامل

Designing a multi-objective nonlinear cross-docking location allocation model using genetic algorithm

In this study, a cross-docking system is designed at strategic and tactical levels. For making the strategic decisions, a multi-objective nonlinear location allocation model for cross-docks is presented based on a distri-bution location allocation model by Andreas Klose and Andreas Drexl. The model is further developed to in-clude the whole supply chain members and the objective functions are w...

متن کامل

Constrained Multi-Objective Optimization Problems in Mechanical Engineering Design Using Bees Algorithm

Many real-world search and optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using classical optimization methods, this paper presents a Multi-Objective Bees Algorithm (MOBA) for solving the multi-objective optimal of mechanical engineering problems design. In the pre...

متن کامل

Solving a New Multi-objective Inventory-Routing Problem by a Non-dominated Sorting Genetic Algorithm

This paper considers a multi-period, multi-product inventory-routing problem in a two-level supply chain consisting of a distributor and a set of customers. This problem is modeled with the aim of minimizing bi-objectives, namely the total system cost (including startup, distribution and maintenance costs) and risk-based transportation. Products are delivered to customers by some heterogeneous ...

متن کامل

Optimal Thermodynamic Design of Turbofan Engines using Multi-objective Genetic Algorithm

The aim of this study is to optimize performance functions of turbofan engines considering the off-design model of turbofan engine as well as employing multi-objective genetic algorithm. The design variables including high-pressure compressor pressure ratio, low-pressure compressor pressure ratio, fan pressure ratio and bypass ratio are calculated in such a way that the corresponding functions ...

متن کامل

Solving a Redundancy Allocation Problem by a Hybrid Multi-objective Imperialist Competitive Algorithm

A redundancy allocation problem (RAP) is a well-known NP-hard problem that involves the selection of elements and redundancy levels to maximize the system reliability under various system-level constraints. In many practical design situations, reliability apportionment is complicated because of the presence of several conflicting objectives that cannot be combined into a single-objective functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003